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a b s t r a c t

A two-phase flow model using the boundary element method was applied to investigate the physics of
a liquid drop impacting onto a solid, dry plate. Xu et al. showed that air pressure plays an important role
in splashing: as air pressure was reduced, splashing of an ethanol drop with a Weber number of 838 was
suppressed. This remarkable observation provided the motivation for the current modeling effort. We
numerically investigate how air pressure affects the behavior of an impacting drop. Surveying both inside
and outside the impacting drop, velocities of both the liquid and gas are computed. Simulations show that
gas speed, as it is displaced by the falling drop, is more than three times higher than the incoming drop
speed. Air entrainment induced by the displaced gas seems to be an important contributor to corona for-
mation, which always precedes any instability, fingering, or splashing of the liquid. To describe drop-
impact phenomena, the maximum spreading diameter of the drop and the topology of the impacting fluid
are reported as functions of Weber number and gas density.

� 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Drop-impact phenomena are ubiquitous; they are observed in
raindrops and in numerous industrial applications such as aerosol
deposition, inkjet printing, painting, impact within the cylinders of
internal combustion engines, and fire suppression sprays. As
shown in classical experiments (Worthington, 1876, 1877, 1908),
a drop will spread over the impacting substrate when its surface
tension energy is less than its dissipative energy (Aziz and Chan-
dra, 2000). Upon impact, a drop spreads radially and forms a toroi-
dal ring when the ratio of Weber to Reynolds (i.e., We to Re)
numbers is fairly low. At intermediate We/Re, an azimuthal insta-
bility develops and forms ‘‘fingers” at the rim of the spreading ring.
If We/Re is further increased, the drop splashes as the fingers dis-
perse into individual droplets. It has been traditionally believed
that surface tension, viscosity, and substrate roughness (i.e., We,
Re, and Ra) are the primary parameters that control drop-impact
phenomena (Rein and Delplanque, 2008). In this paper, we investi-
gate splashing mechanisms using the two-phase flow boundary
element method (BEM) to account for the somewhat non-tradi-
tional effects of gas pressure (Xu et al., 2005) at moderate impact
speeds and when capillary effects are dominant over viscous
effects. The BEM is appropriate for modeling capillary-force-domi-
ll rights reserved.

: +82 2 926 9290.
nant drop-impact phenomena because it accurately replicates the
transient topology of an impacting drop.

Pioneering BEM work for drop impact studies was conducted by
Oguz and Prosperetti (1990) and Yarin and Weiss (1995) and Weiss
and Yarin (1999) with subsequent relevant work by Davidson
(2000, 2002), Reznik and Yarin (2002), and Park et al. (2008). In
most modeling efforts, the drop is initially assumed to be in con-
tact with the impacting substrate or liquid-film and, therefore,
any effects of the air displaced before impact are neglected. Other
models do not consider the gas phase at all in their analyses (Buss-
mann et al., 2000, 1999). Because the surrounding gas was not sim-
ulated in these models, this fundamental contributor to splashing
could not be addressed. Recent experimental observations confirm
that displaced air is instrumental in inducing splashing (Park et al.,
2008; Xu et al., 2005). Yoon et al. (2009a, 2007, 2009b) and Liu
et al. (2010) showed that finger formation along the toroidal ring
of an impacting drop is much better described by the velocity-gra-
dient-dependent Kelvin–Helmholtz (KH) theory than by the den-
sity-dependent Rayleigh–Taylor theory (Aziz and Chandra, 2000).
Xu (2007) also suggested that coronal splashing can be accurately
described with KH instability theory, which requires interaction
between the falling drop and displaced air. Moreover, recent stud-
ies (Mandre et al., 2009; Mani et al., 2010) indicate that the gas
layer squeezed between the substrate and impacting drop (‘‘air
entrapment”) provides a variable-pressure cushion (over which
the drop slides) that can lead to instabilities that induce splashing.

http://dx.doi.org/10.1016/j.ijmultiphaseflow.2010.08.008
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This air entrapment effect is similar to what is observed during
drop-drop binary collisions where drops do not immediately coa-
lesce because of a thin gas layer between them (Qian and Law,
1997). Xu et al. (2005), Mandre et al. (2009) and Mani et al.
(2010) have all demonstrated that fingering increases with increas-
ing gas pressure, which reinforces the importance of the aerody-
namic effects on drop-impact phenomena. Clearly, models should
account for these aerodynamics effects, which are extremely diffi-
cult to observe experimentally because the aerodynamic-induced
ripples are small and ephemeral. Such experimental difficulty is
one of the motivations for this computational work.

There is a wealth of literature on drop impact modeling. Numer-
ous authors have implemented volume-of-fluid (VOF) or Level-Set
approaches to model free-surface problems because they solve the
full Navier–Stokes equations (Azar et al., 2005; Bussmann et al.,
1999, 2000; Fukai et al., 1993, 1995; Ge and Fan, 2005; Haller
et al., 2002; Josserand et al., 2005; Josserand and Zaleski, 2003;
Mehdi-Nejad et al., 2003; Mukherjee and Abraham, 2007; Pasan-
dideh-Fard et al., 1996; Reiber and Frohn, 1999; Renardy et al.,
2003; Sikalo et al., 2005; Yokoi et al., 2009). While VOF-based ap-
proaches continue to improve with the aid of faster computers,
their inherent interpolative nature can introduce inaccuracies in
surface curvature estimate (and hence, capillary forces). As an
example, a typical VOF calculation of fluid sloshing in a tank (Hung
and Lee, 1994) exhibits 1% error in volume conservation, whereas a
BEM calculation had 0.01% volume error with a similar grid resolu-
tion. Also, in this work, we are interested in KH-type inviscid insta-
bility, which may be responsible for the instabilities along the free
surface that lead to splashing. We are particularly interested in the
instability at the interface between gas and liquid. This surface-
tension-driven (or capillary-dominated) instability scenario is
modeled with the BEM.
2. Model development

2.1. Two-phase flow modeling

Heister (1997) provides a complete description of a BEM appli-
cation to two-phase flow. In an inviscid, incompressible, axisym-
metric flow, it is presumed that the flow dynamics are governed
by Laplace’s equation: r2/ ¼ 0. The BEM uses an integral repre-
sentation of this equation to provide the connections among the
values on the boundary, the local geometry, and the local velocity
normal to the boundary, q = @//on, as follows:

a/ð~rÞi þ
Z

C
/
@G
@n̂
� qG

� �
dC ¼ 0; ð1Þ

where /(ri) is the local potential, C is the boundary of the domain, a
is the singular contribution when the integral path passes over the
‘‘base point,” and G is the free-space Green’s function corresponding
to the Laplace equation. For an axisymmetric domain, the free-
space Green’s function can be expressed in terms of elliptic inte-
grals of the first and second kinds and is a function solely of the
instantaneous surface geometry. For this reason, a discrete repre-
sentation of Eq. (1) can be cast as a linear system of equations relat-
ing local / and q values. With discretization, both / and q are
assumed to vary linearly between nodes. Because the resulting inte-
grals do not have exact solutions, four-point Gaussian quadrature is
used to preserve the second-order accuracy overall.

While this governing equation is linear, it accounts for the non-
linearities of free-surface problems through the boundary condi-
tion at the interface. The unsteady Bernoulli equation provides a
connection between the local velocity potential and the surface
shape at all times. Prior formulations (Heister, 1997; Spangler
et al., 1995) have provided a derivation of this connection, which
is suitable for implementation in a Lagrangian surface tracking
environment. The dimensionless form of the unsteady Bernoulli
equation for a liquid surface is characterized with parameters for
the drop radius, a, the impact speed, U, and the liquid density, ql.
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where j is the local surface curvature, Pg is the gas pressure, t is
time, and z is the axial direction. The Weber and Bond numbers
are defined as We = qlU

2a/r and Bo = qlga2/r, respectively, where
r and g are the liquid surface tension and gravitational acceleration,
respectively.

Using the Eulerian–Lagrangian transformation for the surface
nodes moving at the velocity of the liquid, the dimensionless Ber-
noulli equation for the free surface of the liquid becomes:

D/
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¼ 1

2
jr/j2 � Pg �

j
We
þ Bo

We
z: ð3Þ

where D/Dt denotes the material or Lagrangian derivative. Physi-
cally, this Bernoulli equation is in a Lagrangian form that is suitable
for application to fluid elements moving at the local velocity of the
free surface. Eq. (3) includes the effects of dynamic pressure, local
gas-phase pressure, capillary pressure, and hydrostatic pressure,
respectively.

An analogous treatment for the gas phase yields:

e
D/g
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¼ er/ � r/g �

e
2
jr/g j

2 � Pg ; ð4Þ

where e is the gas/liquid density ratio (e = qg/ql). These ordinary dif-
ferential equations are integrated in time using a fourth-order Run-
ge–Kutta scheme to solve for the velocity potential and to predict
the motion of the free surface. Highly distorted surface have points
on the free surface that tend to bunch in regions of higher curvature
as a result of the free-surface motion. To improve the resolution of
highly distorted surfaces, the points on the free surface are redis-
tributed at each time step using a cubic spline fit to the instanta-
neous shape. Fourth-order accuracy is also employed in
computing all surface derivatives to maximize the accuracy of the
surface evolution method. The Laplace equation is solved to update
velocities and this process is repeated for a set period.

It is difficult to calculate contact angles for inviscid flows
(Davidson, 2000). However, the contact angle is specified to corre-
spond to a real contact angle. BEM nodes in contact with a sub-
strate wall are given a ‘‘no penetration” boundary condition; i.e.,
their normal velocity components are zero, q = @//on = 0. When
this boundary condition is enforced, it establishes a relatively large
value for the advancing contact angle (in excess of 90�). Davidson
(2000) recommends fixing the value at 90� while also specifying
that parametric fourth derivatives of r and z on the boundary be
zero at the contact line. These criteria yield results similar to ob-
served experimental trends for drop spreading. In other models,
the advancing contact angle has been modeled as a function of
the capillary number, Ca = We/Re; see the works of Blake and
Haynes (1969), Hoffman (1975), Jiang et al. (1979), Seebergh and
Berg (1992), Schneemilch et al. (1998), Ranabothu et al. (2005).
The capillary number has been related to the splashing criteria
(Cossali et al., 1997; Mundo et al., 1995; Rein and Delplanque,
2008; Yarin and Weiss, 1995), which is also dependent upon the
substrate roughness (Xu, 2007). Clearly, depending upon the tech-
nique, the contact angle can be a strong function of surface tension,
viscosity, and substrate roughness. In the validation section that
compares our inviscid result to the full Navier–Stokes solution of
Fukai et al. (1993), we demonstrate that the inviscid assumption
does not significantly change the topology of impacting drops on
a smooth surface in the capillary-dominated regime we have con-
sidered in this effort.



Fig. 1. A schematic of the computational domain. The liquid drop is released at
height of h (axially) within the gas domain of width w in the radial direction.

Fig. 2. Spreading radius histories from BEM simulations and experimental data.
Comparisons are made at We = 100 (red) and We = 20 (blue). (For interpretation of
the references to color in this figure legend, the reader is referred to the web version
of this article.)
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2.2. Interior velocity computation

Gas velocities, o/i/oz and o/i/or, at any point within the compu-
tational domain, are computed as derivatives in the velocity poten-
tial of the Laplace equation, (1), with a = 2p for point ri on a smooth
surface (or boundary) and a = 4p for an interior fluid point (Sato
et al., 1994; Wang et al., 1996, 2005). When solving for / at an inte-
rior node, the integral over the boundary does not include any
nodes on the interior. Because of this, singularities that arise in
the elliptic integral for the boundary nodes do not occur because
the segment will never contain a base point, ‘‘i”. To calculate / at
an interior node, Eq. (1) can be rearranged as:
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Following the same discretization procedure used for nodes on the
boundary, Eq. (1) becomes:

2p/i ¼ Di;j/j � Si;jqj; ð6Þ

where subscript i denotes an interior node and subscript j denotes a
node on the boundary, and D and S represent the kernels for the
source and doublet integrals, respectively (Hilbing, 1996). When
solving for an individual interior node, D and S become row vectors
and thus the value of /i is given by this single equation. D and S
must already be known before /i can be calculated from Eq. (6).
Therefore, the Laplace equation must be solved for the nodes on
the boundary before it is solved for interior nodes.

The free-space Green’s function solution to the axisymmetric
Laplacian is:

G ¼ 4rKðpÞffiffiffi
a
p ; ð7Þ

and from Heister (1997),

@G
@n
¼ �2ffiffiffi

a
p nrKðpÞ þ

EðpÞ
c
½dnr þ 2rnzðz� ziÞ�

� �
; ð8Þ

where p, a, c, and d are defined as:
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a ¼ ðr þ riÞ2 þ ðz� ziÞ2; ð10Þ

c ¼ ðr � riÞ2 þ ðz� ziÞ2; ð11Þ
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Differentiating Eq. (5) with respect to the base point at ‘‘i” yields
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The values of o/i/oz and o/i/or are determined after values of both /
and q have been calculated for every node on the boundary using
the BEM solution to the Laplace equation. Because / and q are al-
ready known, the D and S matrices are completely determined from
/ and q for the nodes on the boundary and do not need to be inte-
grated in time. Interior node calculations only have to be performed
at times when data about the interior nodes are desired. Alternate
forms of the derivatives of / are also available (Oguz and Prosper-
etti, 1990, Eqs. (A1) and (A2)). Derivation of the Green’s function
is available in Appendix A.
Computing velocities both inside and outside the impacting drop
is important because it addresses the momentum exchange between
the falling drop and the surrounding gas. Velocities are calculated as
the derivative of the velocity potential from the governing Laplace
equation in its integral form. Analytic kernels are derived to repre-
sent the derivative exactly, with solutions obtained through Gauss-
ian quadrature. The analytic kernels compute the accelerating gas
velocities below the falling drop that impart their effects on the drop.
Random numbers are uniformly seeded throughout the computa-
tional domain to specify where local velocities of liquid and gas
phases are calculated and are contoured.
2.3. Computational details

The schematic of the falling drop onto a smooth substrate is
presented in Fig. 1. The outer fixed boundary of the gas domain
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is sufficiently large to encompass the liquid drop for the entire
duration of the calculation and is placed far enough from the liquid
phase to ensure that its influence on the flow field around the drop
is negligible. A coarse grid is used along this outer gas boundary.
Nodes are implemented at the outer boundary to close the compu-
tational domain. The impacting substrate is a smooth, impenetra-
ble, dry plate (i.e., q = 0). Dissipative energy induced by the
Fig. 3. Time series variation in drop profiles for (a) We = 100 and (b) We = 20. The solid
Davidson’s (2000), respectively.

Fig. 4. Comparisons of drop topology between Fukai et al.’s (1993) full Navier–Stokes so
seem of secondary importance because results differ minimally. Fukai et al.’s (1993) non
substrate’s roughness is not considered in this inviscid model
and, thus, the post-impact energy of the liquid is overestimated,
especially if the substrate’s roughness is relevant.

Processor time depends on the grid size and the fine grid reso-
lution applied around the liquid drop adds significant computa-
tional expense. Sufficiently accurate initial grid spacing for the
inner/outer boundary was determined through a grid convergence
and dashed curves represent the computational results from the present study and

lution in the left column and our inviscid BEM in the right column. Viscosity effects
-dimensional time scale is equivalent to ours. Snapshots are at t* = 1.2 (Ca = We/Re).
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study (Park et al., 2008); spacing for the liquid surface (dsdrop) and
for the wall boundary (dswall) with respect to the drop radius are
dsdrop/a = 0.02 and dswall/a = 0.04, respectively. At the start of the
computation, there are p/0.02 � 157 nodes implemented along
the semi-circle free surface. Grid spacing for the outer boundary
(dsfar) is dsfar = 5dswall. A typical unsteady calculation uses 250
nodes along the liquid drop and 400 nodes along the outer bound-
ary because, upon impact, the topology of the drop changes, result-
ing in longer free surface lengths (requiring more closely spaced
nodes before impact).

The drop center starts 4a above the impact surface. The drop’s
dimensionless radius is unity (e.g., the reference length is the
drop’s radius, a) and the drop’s bottom is situated at z/a = 3. Thus,
there are Dt* = DtU/a = 3 dimensionless time units before impact.
The drop is assigned initial speed Ui and velocity gained through
conversion of potential energy is ignored yielding a final impact

speed of Uf ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U2

i þ 2gh
q

� Ui ; the magnitude of the 2gh term

comprises less than 0.1% of the total speed, Uf, for the experiments
of Xu et al. (2005).

Numerical simulations confirmed that the h = 4a starting condi-
tion was sufficiently far from the wall to allow proper calculation
of the pressure increase below the falling drop before impact. It
should be noted that at higher We, using a sufficient number of
computational nodes near the impact region is necessary to cap-
ture the detailed physics of splashing.
(a)

(c)
Fig. 5. (a) Formation of the rising corona and the resulting splashed droplets, whose popu
Side-view snapshots of (a). (c) Snapshot of a splash from the Xu et al. (2005) experimen
3. Results and discussion

3.1. Comparison to Davidson’s and Fukai’s models

Figure 2 compares the histories of the spreading liquid radius to
both data and the models of several authors for We = 100 and
We = 20, respectively. The solid and dashed curves represent the
BEM predictions from our model and Davidson’s (2000), respec-
tively. The experimental data of Stow and Hadfield (1981) and
Chandra and Avedisian (1991) are provided for comparison. Upon
reducing We from 100 to 20, slower spreading is evident because
of the increased relative influence of surface tension, which tends
to constrain the fluid. It is notable that Davidson’s result, based
on an inviscid model, over-predicts the spreading rate, especially
for We = 100 where surface tension is a smaller fraction of the total
force. Though similar spreading for We = 100 was observed using
our inviscid model, our result slightly under-predicts the spreading
rate because of addition of artificial viscosity by diffusive numeri-
cal filters (Yoon and Heister, 2004). Notwithstanding these obser-
vations, the Ohnesorge number is small Oh = We1/2/Re � 10�3 for
these cases and here viscous forces are unlikely to play a major
role. Overall, the differences are small and within the suite of
experimental and modeling uncertainties.

Figure 3 compares our BEM drop profiles (solid curve) to those
of Davidson (dashed curve) for We = 100 and 20. Results agree for
(b)
lation is predicted through Ponstein’s (1959) linear vortex ring instability theory. (b)
t at t* = 1.2.
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the larger Weber number, while notable differences are evident at
the lower Weber number. Differences are attributed to the numer-
ical filter (see Yoon and Heister (2004) for further details) that adds
artificial viscosity to our simulations. It is evident that the size of
the corona (toroidal ring due to mass accumulation in the region)
grows as the relative influence of the surface tension increases
(smaller We); rim formation is related to surface tension. Previous
authors (Fukai et al., 1993; Stow and Hadfield, 1981; Worthington,
1876) also observed these rims and their growth with time. While
the experimental and numerical works of these authors consider
viscosity, the rim still appears in Davidson’s and our inviscid sim-
ulations. However, the addition of diffusion (viscosity) through a
Fig. 6. Time series variations of velocities for
numerical filter can expedite the appearance of the rim; our BEM
simulation captures the rim at We = 100 and demonstrates better
agreement with the experiments (Stow and Hadfield, 1981) than
the results of Davidson. These simulations suggest that rim appear-
ance is at least partly due to surface tension and its appearance is
enhanced by viscosity (manifested through the addition of numer-
ical diffusion in our model).

Figure 4 compares our BEM results to the full Navier–Stokes
solution of Fukai et al. (1993) for We = 100, 10, and 1.4. Fukai
et al. (1993) varied the Reynolds numbers by varying viscosity.
They showed that the maximum spreading radius increases (or,
the thin-film thickness decreases) with larger Re and We, and vice
both liquid and gas phases at various We.
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versa. Inclusion of viscosity yields a velocity profile in the vertical
direction because the velocity close to the wall approaches zero
due to the no-slip boundary condition. Our BEM model is inviscid
and, thus, the no-slip boundary condition cannot be enforced.
However, we impose a no-penetration boundary condition at the
solid surface; i.e., the normal velocity component is set equal to
zero, q = o//@n = 0. This boundary condition is different from
Davidson’s (2000) where u = o//@z = 0. Nevertheless, because these
conceptual model differences do not yield significant qualitative
differences, the velocity profile does not seem to be a critical factor
in splashing, especially at high We or Re numbers. Because our
inviscid model cannot develop a velocity profile within the spread-
ing ring but splashing is still simulated, it means that an accurate
velocity profile is not necessary to simulate spreading and splash-
ing of an impacting drop. By comparing our results to those of Fu-
kai et al. (1993), it again suggests that viscosity is not a primary
factor controlling splashing (at least for the range of parameters
considered here).

The capillary wave of maximum amplification has wavelength
k = r/(qlU

2), according to Renardy et al. (2003), but waves appear
only when k < a or We > 1. A rough estimate for a 1-mm-radius
water drop yields k = 0.7 mm for We = 1.4 as shown in Fig. 4c at
t* = 1.2. An earlier image (t* = 0.4) has wavelength of 0.6–0.7 mm,
consistent with the prediction of Renardy et al. (2003). It is worth
noting that to observe multiple waves (staircase or pyramidal
structures) on the drop surface, WeCa, or We2/Re, must be less than
1, which is the case for Fig. 4b and c.
3.2. Prediction of the number of splashed droplets

The BEM was used to simulate the experiment of Xu et al.
(2005). Therein, the radius of the incoming alcohol drop was
a = 1.7 mm with impact velocity Uf = 3.74 m/s. Alcohol density
Fig. 7. The Weber number effect on the dimensionless maximum diameter (i.e.,
bmax = Dmax/D). Comparisons are drawn between the data from an analytical model
(Gong, 2005), numerical results (BEM simulations by Davidson (2002) and us), and
experiments (Mao et al., 1997).

Table 1
Parameter variation as a function of density ratio, e = qg/ql.

We = qlU
2a/r 20 100

e = qg/ql 10�4 10�3 10�2 10�1 10�4 10

P�g ¼ Pg=q1U2 6.9 69 690 6900 1.38 13

Pg [kPa] 10.13 101.3 1013 10,130 10.13 10
and surface tension were ql = 789 kg/m3 and r = 0.0224 kg/s2,
respectively, yielding We = qlU

2a/r = 837.9. The density ratio was
e = qg/ql = 0.00158. The dimensionless surrounding gas pressure,
P�g ¼ Pg=U2ql, was P�g ¼ 9:18 when Pg = 101.325 kPa.

Figure 5a shows time-series snapshots of the simulated splash-
ing event corresponding to Xu et al’s (2005) experiment using visu-
alization software Tecplot. The instant of impact is t* = 0.0 and the
simulation was initiated at t* = �3.0. It took about t* = 4.0 (equiva-
lent to real time, t = t*a/U = 1.82 ms) for the rising corona to elon-
gate and finally break into ‘‘droplets” (‘‘drop” refers to the
impacting drop). Equivalent side-view snapshots are shown in
Fig. 5b. Experimentally, splashed satellite droplets form notably
earlier than t = 1.82 ms (time of snapshot shown in Fig. 5c is
0.552 ms, t* = 1.2). In fact, droplets are evident in Fig. 5c even as
the upper half of the drop is still collapsing toward the substrate.
One of the reasons for this discrepancy between the BEM predic-
tion and the experiment is that the vortex-ring model of Ponstein
(1959) can only be applied after complete detachment of the ring
from the liquid due to limitations imposed by the axisymmetric
simulation (i.e., splashed droplets are not formed until the vortex
ring is completely separated from the main drop and no nonlinear-
ities are included in the model). Experimental splashes show fin-
gering throughout the rising corona before its complete
detachment and the corona does not form a ‘‘ring,” rather, a num-
ber of ‘‘fingers.” To partially reconcile this discrepancy between the
simulation and experiment, we presume that as soon as a ring is
formed at the periphery of the spreading drop (i.e., the distance be-
tween the closest nodes in the necking ring region is < 10% of the
node’s initial spacing), the ring is assumed detached from the bulk
fluid, immediately breaking up into splashed droplets. Despite this
timing discrepancy, our use of Ponstein’s linear theory predicts 56
splashed droplets while the corresponding experiment had 52 ± 2
splashed droplets at the rim of the corona.

Although the splashing event of Xu et al.’s experiment at
We = 838 was successfully replicated in this study, numerical
instability becomes an issue at larger We. Capturing many small
200

�3 10�2 10�1 10�4 10�3 10�2 10�1

.8 138 1380 0.69 6.9 69 690

1.3 1013 10,130 10.13 101.3 1013 10,130

Fig. 8. Effect of e on bmax = Dmax/D for We = 20, 100, and 200.



Fig. 9. Effect of e on drop shape upon impact at We = 200.
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droplets at high We is computationally challenging because nodes
tend to form a zig-zag pattern at the free surface of the rising ring
and an intractable number of nodes is required to fully resolve
these higher We scenarios.
Fig. 10. The density ratio effect on interface velocities of liquid (left column) and gas (rig
represent the interface between liquid and gas. Here, We = 200. (For interpretation of the
this article.)
3.3. Variation as a function of Weber number

The effects of Weber number on drop velocities are considered in
Fig. 6, which shows the speed of the gas (top two rows) and liquid
(bottom two rows) when t* = 0.0 and 0.8 for We = 20, 100, and
400. Gas displaced from under the falling drop before impact
achieves speeds of 3–4 times the drop speed (e.g., |(u2 + v2)1/2|max/
U) through momentum exchange between the falling drop and
the initially stagnant gas. The gas speed around the drop, except
in the displaced region, is approximately equal to the impact speed
(i.e., see the green color level). At t* = 0.8, the drop periphery has a
high velocity while the drop center is nearly stagnant (blue) against
the unyielding wall; this trend is consistent with observations of
Fukai et al. (1993) and Trapaga and Szekely (1991).

At lower We, a toroidal ring forms because surface tension
decelerates the spreading front. While drop topology changes as
a function of We, its variation does not seem to have a significant
effect on the general distribution of the interior velocities.

Figure 7 shows the non-dimensional maximum diameter of the
impacting drop for a range of We, where bmax is the ratio of the
maximum drop diameter to the initial drop diameter bmax = Dmax/
D or amax/a. Our BEM simulations are compared to those of Gong
(2005) and Davidson (2002) and the experimental data of Mao
et al. (1997). Gong’s model considers the effect of boundary layer
ht column) upon impact. The red arrows indicate velocity vectors and the green dots
references to color in this figure legend, the reader is referred to the web version of
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thickness and assumes ‘‘hockey puck” deformation of the drop
upon impact as:

6
Weffiffiffiffiffiffi

Re
p b4

max þ 30ð1� cos haÞb2
max þ

80
bmax

¼ 20Weþ 120; ð15Þ

where ha is the advancing angle of 97� based on the measurement of
Bussmann et al. (1999). The preceding equation is solved using New-
ton’s method subject to given Weber and Reynolds numbers. As
shown in Fig. 7, our BEM results slightly under-predict the spreading
diameter while Davidson (2000) tends to over-predict. In general, the
numerical predictions are in quantitative agreement with the exper-
imental data, especially at low Weber numbers, We < 20.

3.4. Variations as a function of gas density

The effect of gas pressure (or density because it is assumed that
the gas obeys the Ideal Gas Law) is studied by varying the density
ratio, e = qg/ql, from 10�4 to 10�1. The details of the parametric var-
iation for the gas density study are summarized in Table 1; qg is in-
creased to increase e and r is decreased to increase We.

Figure 8 shows the dimensionless maximum diameters of the
impacting drops, bmax, for We = 20, 100, and 200, as e increases.
In each case, as the gas density increases, the maximum spreading
Fig. 11. Interface velocities of the liquid and gas at various density ratios upon impact. T
(a) vertical liquid velocity, (b) horizontal liquid velocity, (c) vertical gas velocity, and (d) h
drop surface, starting from the top (0) to the impact point at the liquid bottom (p). Her
distance decreases; evidence that the exchange of momentum
with increasingly dense gas limits liquid spread.

Figure 9 shows the effect of gas pressure on drop deformation at
We = 200. The drop deforms into an oblate spheroid just prior to
impact at elevated gas pressures. When We = 200, it takes a sub-
stantially large gas pressure (i.e., 100 atm) to deform the drop be-
fore impact. When the Weber number is higher (We = 838), it takes
only a few atmospheres (e.g., 0.5–2.0 atm) to deform the drop
(Park et al., 2008). Thus, a liquid with relatively high surface ten-
sion maintains a spherical shape even at fairly high gas pressures
while a liquid with relatively low surface tension more easily de-
forms into an oblate spheroid before impact.

Figure 10 shows the variation in velocity vectors along the drop
surface at the instant of impact for various density ratios, e = 10�4

and 10�1. The figures in the left and right columns are the vectors
for liquid and gas, respectively. The gas speeds show more varia-
tion than the liquid speeds because of conservation of momentum.
As the gas is displaced from below the drop, it is imbued with ra-
dial momentum, but its radial momentum component decreases as
the density ratios increases from e = 10�4 to 10�1. Also, when
e = 10�1, the liquid velocity near the contact region is notably
reduced by the increased inertia of the dense gas (see the bottom
figure in the left column in Fig. 10).
hese quantitative data are in conjunction with the qualitative data shown in Fig. 10;
orizontal gas velocity. The distance range on the x-axis represents the location of the
e, We = 200.
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Figure 11 is a quantitative comparison of the velocity vectors
shown in Fig. 10. The left and right columns are the velocities for
liquid and gas, respectively. The first and second rows indicate
the vertical (z-direction) and horizontal (r-direction) velocities,
respectively. Zero and p on the x-axis indicate the drop’s top and
bottom, respectively. Increasing the gas pressure has a prominent
effect on surface velocities of the liquid and even more so for the
gas; the BEM nodes near the impact region (i.e., p on the x-axis)
show large velocity changes. Clearly, the magnitudes of velocity
variations for the gas are much larger than those for the liquid.
Toward the drop’s bottom, velocities increase in both the z and r-
directions, but the velocities quickly go to zero at the bottom cen-
ter, p, upon impact. For the liquid, the drop retains nearly zero hor-
izontal velocity along most of the surface when e = 10�4, although
the horizontal velocity is notably affected when the density ratio
reaches e = 10�1; see Fig. 11b.

4. Conclusion

The BEM was applied to compute fluid velocities that reflect the
momentum exchange between a falling drop and the surrounding
gas. This BEM model both assesses the characteristics (velocities)
of both liquid and gas phases before and throughout impact, and
estimates air displacement velocities due to the falling drop. To val-
idate our model, it was compared to both experimental and numer-
ical data (Chandra and Avedisian, 1991; Davidson, 2000; Fukai et al.,
1993; Stow and Hadfield, 1981) showing both quantitative and
qualitative agreement. Upon increasing We, the drop spreads more
rapidly and widely; the rim size at the periphery of the spreading
liquid was also reduced because of decreased surface tension forces.
The spreading diameter decreased as the density ratio (qg/ql) or air
pressure increased, indicating that the exchange of momentum
with the gas limited liquid spreading. Our computations show that
the air velocity exceeds the impact speed of the drop by more than a
factor of 3. Displaced air may contain sufficient momentum to cause
ripples along the drop surface, and then KH-type inviscid instability
may take place. The BEM results are valid under the assumption that
both liquid and gas are inviscid and incompressible and that the en-
tire event falls into the capillary-dominant regime. In high-speed
impact regimes, viscosity and compressibility may be important.
Also, boundary layer development during viscous spreading may
enhance finger formation at the periphery.
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Appendix A

@2G
@n@zi

¼ �2ðz� ziÞ
a3=2 A� 2ffiffiffi

a
p ðBþ C þ HÞ; ðA1Þ

@G
@zi
¼ 16r2riðz� ziÞffiffiffiffiffi

a5
p F1ðpÞ þ

4rðz� ziÞKðpÞffiffiffiffiffi
a3
p ; ðA2Þ
@2G
@n@ri

¼ 2ðr þ riÞffiffiffiffiffi
a3
p L� 2ffiffiffi

a
p ðM þ NOþ PÞ; ðA3Þ

@G
@ri
¼
�8r rr2

i � r3 � rðz� ziÞ2
h i

ffiffiffiffiffi
a5
p F1ðpÞ �

4ðr þ riÞrKðpÞffiffiffiffiffi
a3
p ; ðA4Þ

and

A ¼ KðpÞnr þ
EðpÞ

c
dnr þ 2rðz� ziÞnz½ �; ðA5Þ

B ¼ 4nrðz� ziÞrri

a2 F1ðpÞ; ðA6Þ

C ¼ �4ðz� ziÞrri

ca2 F2ðpÞ þ
2ðz� ziÞEðpÞ

c2

� �
dnr þ 2rðz� ziÞnz½ �; ðA7Þ

H ¼ EðpÞ
c

2ðz� ziÞnr � 2rnz½ �; ðA8Þ

L ¼ KðpÞnr þ
EðpÞ

c
dnr þ 2rðz� ziÞnz½ �; ðA9Þ

M ¼
�2nr rr2

i � r3 � rðz� ziÞ2
h i

a2 F1ðpÞ; ðA10Þ

N ¼
2 rr2

i � r3 � rðz� ziÞ2
h i

ca2 F2ðpÞ þ
2ðr � riÞEðpÞ

c2 ; ðA11Þ

O ¼ dnr þ 2rðz� ziÞnz; ðA12Þ

P ¼ 2EðpÞnrri

c
: ðA13Þ

F1(p) and F2(p) are integrals that result from differentiation of the
elliptic integrals in Eq. (6).

F1ðpÞ ¼
Z 2p

0

sin2 Wffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ð1� pÞ sin2 W
h i3

r dW; ðA14Þ

F2ðpÞ ¼
Z 2p

0

sin2 Wffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ð1� pÞ sin2 W

q dW; ðA15Þ

and are related to the elliptic integrals K(p) and E(p) as follows:

F1ðpÞ ¼
�a2

4ðz� ziÞrri

@E
@zi
¼ a2

2 rr2
i � r3 � rðz� ziÞ2

h i @E
@ri

; ðA16Þ

F2ðpÞ ¼
a2

4ðz� ziÞrri

@K
@zi
¼ �a2

2 rr2
i � r3 � rðz� ziÞ2

h i @K
@ri

; ðA17Þ

The integrals F1(p) and F2(p) are calculated numerically using the
Gaussian quadrature.

It is important to note that the terms o//ozi, oq/ozi, o//ori, and
oq/ori obtained from the differentiation of Eq. (6) are all equal to
zero because the boundary values q and / do not depend on the
interior point; i.e., o//ozi = o//ori = 0, oq/ozi = oq/ori = 0. The deriva-
tives were taken with respect to the base points. The terms q and /
that are integrated in (6) are values at the field points (on the
boundary of the domain) and are not functions of zi and ri of the
base points in the interior. Thus, partial derivatives of these terms
with respect to interior z’s and r’s will be equal to zero. If the deriv-
atives had been taken with respect to the field points, these terms
would not be equal to zero.
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In a manner analogous to that employed for the solution on the
boundary, Skernz and Dkernz , and Skernr and Dkernr can be defined such
that:

@/i

@z
¼ 1

4p

Z
C

qSkernz
� /Dkernz

� �
dC; ðA18Þ

@/i

@r
¼ 1

4p

Z
C

qSkernr
� /Dkernr

� �
dC ðA19Þ

where

Dkernz ¼
�2ðz� ziÞ

a3=2 A� 2ffiffiffi
a
p ðBþ C þ HÞ; ðA20Þ

Skernz ¼
16r2riðz� ziÞffiffiffiffiffi

a5
p F1ðpÞ þ

4rðz� ziÞKðpÞffiffiffiffiffi
a3
p ; ðA21Þ

Dkernr ¼
2ðr þ riÞffiffiffiffiffi

a3
p L� 2ffiffiffi

a
p ðM þ NO� PÞ; ðA22Þ

Skernr ¼
�8r rr2

i � r3 � rðz� ziÞ2
h i

ffiffiffiffiffi
a5
p F1ðpÞ �

4ðr þ riÞrKðpÞffiffiffiffiffi
a3
p : ðA23Þ

Eqs. (A18) and (A19) are then rewritten as the sum of the integrals
along each element. Because / and q are assumed to vary linearly
over the length of an element, the values of / and q at any point
on a given element bounded by nodes j and j + 1 are:

/ ¼ /j
Cjþ1 � C
Cjþ1 � Cj

þ /jþ1
C� Cj

Cjþ1 � Cj
; ðA24Þ

q ¼ qj
Cjþ1 � C
Cjþ1 � Cj

þ qjþ1
C� Cj

Cjþ1 � Cj
; ðA25Þ

where C is the distance of the point of interest from the starting end
of the element. If terms I1z;r ; I2z;r ; I3z;r , and I4z;r are defined so that:

I1z ¼
Z Cjþ1

Cj

Cjþ1 � C
Cjþ1 � Cj

Skernz dC; ðA26Þ

I2z ¼
Z Cjþ1

Cj

C� Cj

Cjþ1 � Cj
Skernz dC; ðA27Þ

I3z ¼
Z Cjþ1

Cj

Cjþ1 � C
Cjþ1 � Cj

Dkernz dC; ðA28Þ

I4z ¼
Z Cjþ1

Cj

C� Cj

Cjþ1 � Cj
Dkernz dC; ðA29Þ

and

I1r ¼
Z Cjþ1

Cj

Cjþ1 � C
Cjþ1 � Cj

Skernr dC; ðA30Þ

I2r ¼
Z Cjþ1

Cj

C� Cj

Cjþ1 � Cj
Skernr dC; ðA31Þ

I3r ¼
Z Cjþ1

Cj

Cjþ1 � C
Cjþ1 � Cj

Dkernr dC; ðA32Þ

I4r ¼
Z Cjþ1

Cj

C� Cj

Cjþ1 � Cj
Dkernr dC; ðA33Þ

and if we divide each of the integrals into two parts, Eqs. (A18) and
(A19) become:
@/i
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; ðA34Þ
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The terms I1z;r � I4z;r are calculated using Gaussian quadrature. To
use Gaussian quadrature, the limits on the integrations are changed
from (Cj, Cj+1) to (�1, 1). This is accomplished with the
substitution:

n ¼ C� C
DCj

2

; ðA36Þ

where C is the average C over the interval. This gives:

dC ¼ DCj

2
dn: ðA37Þ

Substituting this into Eqs. (A26)–(A33) reduces them to:
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Z 1

�1

1� n
2
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